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Equations of state for dense binary-ionic mixture (BIM) plasmas with charge ratios Rz <4.5 are evalu-
ated for both fluid and solid phases on the basis of internal energies calculated by the Monte Carlo (MC)
simulation method. The accuracy of the results has been confirmed through a sum-rule analysis of the
free energy with respect to screening potentials at zero separation in one-component plasmas. Phase dia-
grams for various BIM’s appropriate to white-dwarf interiors are constructed, including the effects of
compressibility of the relativistically degenerate electrons. Eutectic diagrams, which result in significant
chemical separation upon solidification, are predicted for BIM’s with R; 2 1.6. Free energies for dense
ternary-ionic mixtures are also derived for both fluid and solid phases through comparison of the corre-
sponding MC internal energies and by a sum-rule analysis using BIM screening potentials at zero separa-
tion. We apply the results to the process of solidification of !2C-'%0-22Ne mixtures in the interiors of
white dwarfs. We find that chemical separation does indeed occur at solidification, and we obtain the re-
sult that nearly pure Ne cores are formed in such white dwarfs, even though Ne is only a trace element

in the mixture.

PACS number(s): 52.25.Kn, 05.70.—a, 81.30.Bx, 64.75.+g

I. INTRODUCTION

A mixture of classical charged particles embedded in a
uniform background of neutralizing charges is one of the
fundamental models for the dense plasmas found in the
interiors of degenerate stars. Such a plasma may be
called a one-component plasma [1] (OCP), a binary-ionic
mixture (BIM), a ternary-ionic mixture (TIM), and so on,
depending on the number of ionic species present. Dense
plasmas either in laboratories or in astrophysical settings
usually contain several different species of ions, either as
the principal constituents or as trace elements, i.e., as im-
purities.

BIM and TIM models are particularly useful for appli-
cations to the interiors of degenerate stars such as white
dwarfs (WD’s). Most WD’s are thought to be composed
mainly of carbon and oxygen left by helium burning [2],
and they may contain trace elements such as neon and
iron [3]. The more massive WD’s, which have evolved
from main-sequence stars in the mass range M =8M, to
10M, are predicted [4] to form O-Ne-Mg cores, where
Mg=1.99X10% g is the solar mass. The central densi-
ties and temperatures for WD’s are estimated to lie in the
ranges p=10"-10'° g/cm?® and T =10°-10® K. The elec-
trons in WD’s are relativistically degenerate and consti-
tute the (nearly) uniform distribution of background
charges, while the ions are strongly Coulomb coupled,
since the magnitudes of their interaction energies far
exceed their thermal energies.

The equation of state for the OCP has by now been cal-
culated quite accurately through the Monte Carlo (MC)
simulation method [5—7]. It has been found that an OCP
with charge Ze and mass number A solidifies into a
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body-centered-cubic (bcc) crystal when the Coulomb cou-
pling parameter I'=(Ze)?/(akyT) exceeds the value
I, ~172-180. Here a =(4mn /3)" /3 is the radius of an
“ion sphere” containing one single ion, and » is the num-
ber density of ions. Thus the OCP solidifies at a tempera-
ture T=T,,, where
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For an ionic mixture with more than one species of ions,
chemical separation of the mixture may occur, either at
solidification [8] or in the fluid phase [9]. Ichimaru, Iye-
tomi, and Ogata [10] predicted an azeotropic phase dia-
gram for C-O BIM’s based on an equation of state deter-
mined from MC simulations and variational calculations;
a  similar—though  spindle-shaped rather than
azeotropic—phase diagram was obtained independently
by a density-functional calculation [11]. Except for C-O
BIM’s with charge ratios R, =Z,/Z =%, however, ac-
curate calculations have not previously been published
for the equations of state and phase diagrams of multi-
ionic mixtures.

If it occurs, chemical separation of the interior of a
WD will alter its subsequent thermal evolution
significantly. It has been pointed out [12] that a compar-
ison between theoretical WD cooling calculations and the
observed WD luminosity function, i.e., the distribution of
the numbers of field WD’s as a function of luminosity,
can be used to estimate the age of the galaxy. If chemical
separation occurs, the release of gravitational energy
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caused by settling of the heavier matter can increase the
estimated ages of the WD’s substantially [13,14]. For an
accreting WD, chemical separation may produce a
stratification of the different species, thus affecting
electron-capture rates, opacities, and nuclear-fusion rates,
all of which have important effects on the evolution
preceding explosion as a supernova [15-17].

In this paper, we calculate the free energies for both
the fluid and solid phases of multi-ionic plasmas by exten-
sive MC simulations, and we thereby predict the phase
diagrams for BIM’s with charge ratios 1 <R, <4.5. For
the range 1 <Rz S1.4, we find that mixed solids of the
two species form at solidification, and the phase diagrams
are found to be of the azeotropic type. On the other
hand, nearly complete chemical separation takes place
upon solidification of a BIM with R, R 1.6, which has a
phase diagram of the eutectic type. Phase diagrams for
BIM’s with R;=~1.5 exhibit composite characteristics,
containing elements of both eutectic and azeotropic
types. We also consider TIM’s appropriate to the interi-
ors of WD’s, and we find that their excess energies evalu-
ated from MC simulations are well represented by a bilin-
ear mixing of the BIM values. Using the free energies
thus determined, which we have confirmed separately by
a sum-rule analysis, we consider the solidification of C-
O-Ne TIM’s. Our results predict the formation of a near-
ly pure Ne core in such a WD, even though Ne is only
present as a trace element.

In Sec. II, we first determine the equations of state for
BIM’s in both the fluid and solid phases, and we con-
struct phase diagrams for various BIM’s appropriate to
WD interiors. Section III is devoted to an evaluation of
the free energies and phase diagrams and to a preliminary
investigation of the solidification process for TIM’s in
WD’s. We end with some concluding remarks in Sec. IV.
Applications of these phase diagrams to specific astro-
physical problems will be published elsewhere.

II. DENSE BINARY-IONIC MIXTURES

We consider a multi-ionic mixture consisting of NV, par-
ticles of species i, with charges Z;e and mass numbers 4;,
in a volume V (i =1,2,...). The total number of parti-
cles is N=3,N;, and the ordering Z, <Z, < - - is as-
sumed. The thermodynamic state of a mixture with
charge ratios R;,;=Z;/Z; and molar fractions
x; =N, /N is specified by the Coulomb coupling parame-
ters

r,— %) @
YoakgT
where
3z, 173
a;= - (3)

is the ion-sphere radius [18] for an ion of species i, and n,
is the (uniform) number density of neutralizing electrons.
The coupling parameters in Eq. (2) are mutually related,
e.g., I';=R3/iT;. For simplicity, we write R; =R, and
x =x, for the BIM’s.
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FIG. 1. MC results for the partial radial-distribution func-
tions g;;(r) for BIM fluids with Rz =5 and x =0.1 and 0.5. The
three dotted curves in each panel correspond to the cases with ij
equal to 1-1 (left), 1-2 (middle), and 2-2 (right).

A. Fluid phase

We have performed MC simulations for BIM fluids
with 37 different combinations of the parameter values
R;={4%,3,5}, x=0.01-0.5, and I';=5-200. We have
used N =1000 MC particles for cases with R; =3 and 5,
and N=1024 for Ry;=%. In each run, 7X10°
configurations are generated after the system has reached
an equilibrated state. Figure 1 displays examples of the
partial radial-distribution functions g;;(r) for BIM’s with
R;=5 and x =0.1 and 0.5 at I';=10. The three dotted
curves in each panel correspond to the pairs 1-1 (left), 1-2
(middle), and 2-2 (right). We find that the first-peak posi-
tions 7, ;; of g;;(r) for each pair closely follow the ion-
sphere (IS) scaling; that is, r ;; < (a; +a;)/2. Deviations
from IS scaling can be seen only for the 1-1 pairs at
smaller I'y; for R; <5 and I'; > 5, the deviations are ade-
quately approximated by the expression [19]

rpk,ll/al 0.135 ———
— T =1—-"—1V'x(R,—1), (4)
rI?kCP(I"I)/a r, v z

where we set 75 " (I')/a=1.610+0.0251InT" as derived
from the data in Ref. 6. The first peak for each pair
steepens as x increases at the same I'}, indicating that the
coupling between the lower-Z ions is in fact enhanced by
the inclusion of the higher-Z ions.

The departure of r, ; in Eq. (4) from perfect IS scal-
ing affects the screening potentials [20,21], which are
defined by

Z.Ze?

H,.,(r)=kBT1ng,.j(r)+—r’—— . (5)

Our best estimates for H;;(0) at R; =5 and I';>5 are
[19]
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H;(0) HZ,+Z)) ) )
TBF—FU-(1.356'—0.0213lnF,-j)—Wrij(0.456—0.01301nfij) (1—4A4)°, (6)
i j
[
where T'j; EZZ,-‘ZjeZ/[(a,.--i-aj )kBT]', and the deviation 4o v R;—1(xR;—0.11)
from the IS-scaling value is parametrized as (Rz,x,T')=0.32 R o2
Z .

0.007x(R,—1)* for (i,j)=(1,1),
A= z / )
0 otherwise .

Equations (6) and (7) will be useful in Sec. III for our
sum-rule analysis of the free energies of TIM’s.

Table I lists the MC results for the excess internal ener-
gy normalized by Nk T,

NXx,;x; Z,Z.e*
uBIM = i%j _
together with the deviation
AugM=udM—uy ©)

from the linear mixing (LM) value

Uy = Sxud(r,) (10)

i

where we use [6]
u Q%P (T')=—0.898 004" +0.967 86T"*2°
+0.220 7037 ~%2°—0.860 97 (11)

for the excess internal energy of the OCP fluids. To cal-
culate phase diagrams, we need to determine u 2™ with
errors much smaller in magnitude than the values of the
thermal energy; that is, with relative errors less than
0.1%. We see that the values of uB™ given in Table I do
have sufficient accuracy for this purpose.

The cases with R; =% in Tables I and III include the
MC runs performed and presented earlier in Refs. [10]
and [22]. However, the values of #B™ given in Tables I
and III correct the values cited previously in Table I of
Ref. [10]. The MC simulations, performed using periodic
boundary conditions, collect the interaction energies be-
tween the different particles, as well as those between
self-images that remain constant during the runs. In
some of the old runs reported in Refs. [10] and [22], the
terms between self-images were not correctly computed.

From Table I, we see that the LM formula, Eq. (10),
reproduces uBIM with relative errors less than 1% for all
cases. We also find that the magmtude of AuB™ de-
creases proportionally to Iy that is,
[AuBM /yBIM |« "2 This is connected with the
behav1or of the first-peak positions of g;;(r), which obey
the IS scaling with increasing accuracy at larger I';. It is
remarkable—and very important for the phase
diagrams—that AuB™ tends to take on negative values
in the limit of x —O0 for all values of R,. We have fitted
the values of Au2™ in Table I with the formula

x%5+2X%10~ 3x(1—x)
x7+5%x107° T

(12)

Figure 2 compares the MC values of AuBIM for R;=3
and 5 with this fitting formula, confirming the accuracy
of the fit for both cases. In the figure, the MC values for
R, =3 (5) are plotted by solid circles, open circles, and
triangles, at I'; =10 (5), 15 (7), and 20 (10), respectively;
the results given by Eq. (12) at the corresponding values

TABLE 1. MC results for the normalized excess internal ener-
gy uB™ for various BIM fluids. Au5™ is the deviation from the
OCP LM value defined by Egs. (9)— (1 1).

R, x T, ug™” AGM
4 0050781  180.0 —163.938+0.003  —0.014
1 0160156  159.574  —154.712+£0.003  —0.004
4 0160156 191489  —186.042+0.003 0.007
4 0420898 2000 —222.940+0.005 0.138
3 0480469  163.636  —187.534+0.005  —0.022
i 05 163.636  —189.259+0.006 0.010
i 05 200.0 —231.814£0.006 ~ —0.032
3 o001 10.0 —8.46110.001  —0.004
3 005 10.0 —10.301£0.001 0.000
3 01 10.0 —12.602+0.001 0.004
3 02 10.0 —17.208+0.001 0.009
3 05 10.0 —31.0350.002 0.013
3 o001 15.0 —13.012£0.001  —0.003
3 005 15.0 —15.791£0.001  —0.001
3 01 15.0 —19.265+0.001 0.001
3 02 15.0 —26.21240.001 0.007
305 15.0 —47.06610.002 0.009
3 o0l 20.0 —17.602£0.001  —0.002
3005 20.0 —21.319£0.001  —0.001
3 0l 20.0 —25.963+0.001 0.004
3 02 20.0 —35.260+0.002 0.003
305 20.0 —63.14510.002 0.008
5 001 5.0 —4.35420.001 0.001
5 005 5.0 —6.74140.001 0.007
5 01 5.0 —9.726+0.001 0.015
5 02 5.0 —15.70240.001 0.023
5 05 5.0 —33.65240.002 0.027
5 001 7.0 —6.27940.001 0.000
5 005 7.0 —9.639+0.001 0.007
5 01 7.0 —13.84240.001 0.013
5 02 7.0 —22.253+0.001 0.020
5 05 7.0 —47.504+0.002 0.022
5 001 10.0 —9.205+0.001  —0.002
5 005 10.0 —14.028+0.001 0.004
5 o1 10.0 —20.057+0.001 0.011
5 02 10.0 —32.126+0.002 0.015
5 05 10.0 —68.3431:0.003 0.015
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of I'| are drawn as solid, dashed, and dotted curves.

The excess free energy normalized by Nk T is calculat-

ed by integrating u BIM.

r, dT]
AfBIM(RZ’x’F1)=fl 1 F, A BIM(RZ,)C,FII)
+AfBM(R,,x,T|=1) . (13)

For T'; 51, the hypernetted-chain (HNC) scheme [23]
gives the free energy for the fluid mixture with reliable
accuracy. To obtain the integration constant in Eq.
(13), we have thus solved the HNC equations at
') =1 for BIM’s with R,={2,3,4,5} and
x ={0.01,0.1,0.2,0.3,0.5,0.7}, and we have fitted the
results with the formula

0.0551(R, —1)"8x (1—x)
1+1.12(R;—1)x

AfEM(Rz,x, T =1)=

for R, <5. (14)

This expression fits the tabular data with errors less than
0.001. Taking the charge-neutrality requirement for the
mixture into account, and recalling that by hypothesis
the electron density is independent of the concentrations
x; in a BIM, we find [9] that the ideal part of the free en-
|

AfPM(RZ,x, T=AfEM +AS i

=0.32
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FIG. 2. The normalized excess internal energies for BIM
fluids with Rz =3 and 5. The MC values for R; =3 (5) are plot-
ted by solid circles, open circles, and triangles at I'; =10 (5), 15
(7), and 20 (10), respectively; the solid, dashed, and dotted
curves represent Eq. (12) at the corresponding values of I";.

ergy is given by

Sl |—i2
X n
i 2]]]

The Helmholtz free energy normalized by Nk T for BIM
fluids with R, <5 is therefore expressed as [20]

Afig= (15)

1
x(1—x) ‘1 r, ]

R;—0.22 (x174+5X%107%)
0.0551(R; —1)"8x (1—x) 1—x xR,
+(1—x)In | ———— |+xIn | ————— 16
1+1.12(R, — Dx =0T R, | T | 1% + R, 16
[
which we shall use for the analysis of the phase diagrams. FOCP(I)=—0.898 004" +3.871 44T%-%
The finding that AuB™ <0, and consequently that o5
[AfBIM Rz,x, AfBIM RZ,x,I‘=1)]<0, for x <<1 —0.882812T" —0.86097 InI"
('>1)is conﬁrmed independently by the following sum- —2.52692 . (18)

rule analysis arising from the requirement of thermo-
dynamic consistency. It has been shown [20,24,25] that
the OCP screening potential at the origin equals the
difference in the excess free energies before and after a
nuclear-fusion reaction between two (identical) ions:

H(0) —2OCP () — fOCP(25/3T)
kgT
AfBIM (R;=2,x,'|=T) . 17

x—0

The term involving the partial derivative of Af2i™ arises
from the fact that the excess free energy after the reac-
tion is that of a BIM with a single nucleus of charge 2Ze
embedded in an OCP consisting of ions of charge Ze. We
calculate the OCP excess free energy from [6]

The screening potential H(0) is given by Eq. (6), with
Z;=Z; and a;=a;. For =100 (40), we find that the
left-hand side of Eq. (17) assumes the values
H(0)/kgT=110.099 (44.437). From Eq. (18), we obtain
the corresponding values 2f9CP(T")— f9CP(23/3T)
=107.795 (43.528), and from the expression given in Eq.
(16), the right-hand side of Eq. (17) takes on the values
110.011 (45.709). Thus the derivative of AfE™ at x —0
has the correct sign to ensure the sum-rule requirement
Eq. (17).

The physical reason for the result AuB™ <0 at x <<1
in a BIM fluid may be traced to the fallure of a thermo-
dynamic description based on the IS model when it is ap-
plied to an extreme case in which one of the ionic constit-
uents is dilute and thus is inherently in the weak-coupling
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regime. We recall that Eq. (11), on which the LM formu-
la is based, applies only to a plasma in strong coupling
and that for I' <1 (i.e., weak coupling) it gives a result
that is smaller in magnitude than that which one would
calculate from the Debye-Hiickel or Abe formulas [26],
for instance. The true MC values for the excess internal
energy are therefore larger in magnitude than the LM
calculation based on the strong-coupling formula. For a
BIM solid, however, an IS model provides a relatively ac-
curate result irrespective of the value of x; hence
AuB™ >0 in a BIM solid even with x <<1, as we shall
find in Sec. III B.

B. Solid phase

It is well known that the OCP in its ground state as-
sumes a bcc lattice structure. This conclusion is obtained
through comparison of the Madelung energies [27] of the
several cubic lattice structures and that of the
hexagonal-close-packed (hcp) lattice. Extensive MC simu-
lations have been performed for OCP solids with cubic
structures [5,6,28—30], and the bcc lattice has been
shown to have the lowest free energy at finite tempera-
tures as well.

The free energies of solid mixtures, containing ions
with differing charges, depend on the specific ionic
configurations. We have little knowledge of these struc-
ture for BIM solids under equilibrated conditions. Out-
standing issues include the following questions: Do
BIM’s form ‘“‘disordered” solids instead of regular, crys-
talline solids? How does the equilibrium structure de-
pend on the temperature or density? To elucidate these
issues, we first calculate BIM Madelung energies for both
crystalline and disordered solids. The excess internal en-
ergies at finite temperatures for each type of solid are
then evaluated by the MC simulation method. Combin-
ing these results, we estimate the free energies and thus
determine the equilibrated structures for the BIM solids.

The OCP Madelung energy is EST/[N(Ze)*/a]
= —0.895 929 for the bcc structure, lower than either the
value —0.895 874 for the face-centered-cubic (fcc) struc-
ture or the value —0.895 838 for the hcp structure [27].
It is thus reasonable to assume that BIM’s with R, ~1
have the lowest energies when all the ions form a bcc
structure. We have therefore computed Madelung ener-
gies EB™ for each of the following three types of BIM
metastable solids, each of which has an underlying bcc
structure: (1) a “random solid,” appropriate for any
value of x, which is obtained by randomly distributing all
of the particles on bcc lattice sites and then moving parti-
cles in the directions of the force acting on them; (2) a
“CsCl-type crystal,” which corresponds to an underlying
bece structure with x =0.5, where the two species of par-
ticles each form interpenetrating simple cubic lattices
[27,31]; and (3) a “4{fcc}-type crystal,” for x =0.25 and
0.75, where the bcc sites are divided into four equivalent
fce sites, and each of the four is occupied by particles of
the same species.

The Madelung energies for random solids have been
calculated for 20  different combinations of
R;={%,3,2,3,4} and x={;,0.25,0.5,0.75} using

3732 4327

N =432 particles. Starting from a random-bcc
configuration, where all the particles are distributed ran-
domly on the bee sites, we look for local minima in the
energy by displacing particles along the force directions
computed from all the surrounding particles following
the conjugate-gradient procedure [32]. We define the
Madelung energy EE™ for a random solid as the average
of the interaction energies obtained from several different
random simulations, each with a different starting
configuration, which we shall call “starts” for brevity.

For the CsCl- and 4{fcc}-type crystals, we have exam-
ined the stability of the crystals by displacing all the par-
ticles from the initial lattice sites in random directions by
an amount &r=0.05(47N/3¥V) '3, We have thus
confirmed that these crystalline configurations are stable
for R, =4.

Table II lists the Madelung energies for random solids

TABLE II. The deviation of the normalized Madelung ener-
gy from the OCP LM value for various BIM solids defined by
Eq. (19). See text for the explanation of “Type of start.”

AER™

R, x Type of start N(Z.e)i/a,
% 0.01157 random bcc 0.00007+0.00001
3 0.25 random bcc 0.000 93+0.000 02
3 0.25 4{fcc} 0.00075
3 0.5 random bcc 0.001 26+0.00002
% 0.5 CsCl —0.00006
3 0.75 random bcc 0.000 97+0.000 02
% 0.75 4{fcc} 0.00103
2 0.01157 random bcc 0.000 20+0.00001
% 0.25 random bcc 0.003 00+0.00005
% 0.25 4{fcc} 0.002 42
3 0.5 random bcc 0.004 00+0.000 04
% 0.5 CsCl —0.00019
z 0.75 random bcc 0.003 60+0.000 06
—§~ 0.75 4{fcc} 0.004 26
2 0.01157 random bcc 0.00041+0.00001
2 0.25 random bcc 0.003 65+0.000 04
2 0.25 4{fcc} 0.004 53
2 0.5 random bcc 0.005 03+0.000 05
2 0.5 CsCl —0.00024
2 0.75 random bcc 0.0065+0.0001
2 0.75 4{fcc} 0.009 84
3 0.01157 random bcc 0.001 13+0.00002
3 0.25 random bcc 0.003 611+0.000 06
3 0.25 4{fcc} 0.01134
3 0.5 random bcc 0.006 24+0.00007
3 0.5 CsCl 0.001 34
3 0.75 random bcc 0.011 7£0.0001
3 0.75 4{fcc} 0.040 59
4 0.01157 random bcc 0.001 65+0.000 02
4 0.25 random bcc 0.002 88+0.000 06
4 0.25 4{fcc} 0.01721
4 0.5 random bcc 0.0073£0.0001
4 0.5 CsCl 0.00678
4 0.75 random bcc 0.0169+0.0002
4 0.75 4{fcc} 0.091 17
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obtained from ten starts, as well as for the CsCl- and
4{fcc}-type crystals, in the form of deviations from a LM
calculation based on the OCP values:

AEEM
N(Z,e)/a,

BIM
M

=_ M — 5/3

N(Z,0)/a, +0.895929(1—x +xR7°) . (19)
In the cases of lattice simulations, no error assessment is
involved because of the accuracy. It is remarkable that
CsCl-type crystals at x =0.5 for R; <4 and 4{fcc}-type
crystals at x =0.25 for R; <3 have significantly lower
energies AES™ than do the random solids. We note that

AEE™ for a CsCl-type crystal becomes negative for
J

0.05(Rz—1)%x(1—x)

R, <2.3. The high degree of symmetry of these special
types of crystal structures evidently permits a substantial
reduction in the energy (cf. Ref. [27]).

The Madelung energies computed for the random
solids are plotted in Fig. 3 as crosses (R =4%), triangles
(Rz=3%), squares (R;=2), open circles (R;=3), and
solid circles (R, =4), to illustrate their dependences on
R; and x. For R; <%, we find that the values of AE M
for the random solids are symmetric with respect to in-
version of x. As R, increases, the peak in AEE™ begins
to shift toward x =1, and the peak height increases. In
contrast to our finding that AuB™ <0 for x <<1 for the
BIM fluid phases, the Madelung-energy deviations
AEB™ remain positive even for x <<1. An analytic ap-
proximation for AEE™ for the random solids with

R, S4.5is

AEGM [1+0.64(R,—1)][140.5(R, —1)?] "
N(Ze)*/a, 27(Rz—1) _ _ :
—Z  Vx(Vx— _ _
1+ 140 1R, —1) x (Vx —0.3)(Vx —0.7)(Vx —1)

This expression is plotted in Fig. 3 as dotted (Rz=4%),
dashed (R;=3%), long-dashed (Rz=2), dot-dashed
(Rz=3), and solid (R, =3) curves.

The reason why the peak in AEE™ for a random solid
shifts from x =0.5 toward x =1 as R, increases may be

explained as follows. Particles 2" (larger Z) make larger

contributions to the interaction energy than do particles

“1.” Thus the particles “2” as “contaminants” in a lat-
tice of particles “1” act to destroy the crystalline order
more efficiently than do particles “1” as contaminants in
a crystal of particles ““2.” This can be seen directly by ex-

0.020

BIM
AEM
N(Z1e)2/aq

FIG. 3. The normalized Madelung energies for BIM random
solids. Numerical results are plotted by crosses (R, = 53—), trian-
gles (Rz= %), squares (R, =2), open circles (R =3), and solid
circles (Rz=5); the dotted, dashed, long-dashed, dot-dashed,
and solid curves represent the results given by Eq. (20) at the
corresponding values of R .

f

amining the microscopic particle configurations. In this
way, we find that crystalline order is destroyed for BIM’s
with R, 2 3 at x =0.25 and for BIM’s with Rz X3 at
x =0.75; that is, there are different threshold values of
R, below which regular crystalline order exists. Figure 4
shows examples of projection maps of particles in BIM’s
with R; =2 at x =0.25 and 0.75, where the crosses and
circles represent particles of species “1” and “2,” respec-
tively. For x =0.75, we clearly observe a crystalline or-
der of the particles, while the particles are disordered for
x =0.25. The destruction of crystalline order can also be
demonstrated quantitatively by an examination of the
first-peak position 7y ;; of g;;(r). We find [33] that the
deviation from the IS-scaling value, §;;=r ;; /a;;—1.76
with a;=(a;+a;)/2, is larger in magnitude for
(i,j)=(1,1) than for either the (1,2) or the (2,2) pairs, and
that, in addition, |£,,| grows in proportion to x'-*. The

x=0.25

FoT P Tor T o]

ﬁwgﬁﬁ%ﬁﬁ@w

P Foy

°F °*;f,+°3°ab5r€:ﬁ€

@{p-u kNP N
G+ #0 % O PFYO

a:*'“o\bi’+ C)

-‘%*++p o + +Q

[0 % *

o,

A Sl

FIG. 4. Projection maps of particles in the ground state for
random solids with Ry =2 and with x =0.25 (left) and 0.75
(right). Both maps represent projections onto the {100) direc-
tion of the initial bce lattice. In each panel, the crosses and cir-
cles represent particles of species “1”” and “2,” respectively.
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destruction of crystalline order observed for x <0.5
reduces the deviation in r, ;; from the IS scaling, and
hence acts to lower the Madelung energy toward the LM
value.

The internal structure of a BIM solid in the ground
state, as given by the present AEE™ analysis, is either
one that is phase separated into a CsCl-type crystal to-
gether with a pure crystal of species “1” or “2” (for
R;52.3), or else it is one that is phase separated into
pure crystals of each species (for R, >2.3). These predic-
tions apply only at temperatures far below the melting
temperature, however, as we show by the following calcu-
lation of the internal energies at finite temperatures from
our MC simulations.

Starting from random, CsCl-type, or 4{fcc}-type distri-
butions on bcc sites, we have performed MC simulations
for BIM solids with R, ={%,2,2,3,4}, at various values
of x and I'y, using N =1024 particles. In addition, MC
runs for random fcc starts have been performed for
R;=3 and x = %, using N =864 particles. In averaging
the energy over the initial distributions for the random
bee and fee solids with R, =4, we have incorporated
particle-exchange trials [10] in the Metropolis algorithm
in addition to the usual displacement trials. For Ry >3,
the internal energies are averaged over five separate MC
runs.

We found that the system did not reach thermal equi-
librium even after 5X 10° configurations for random bcc
starts with R, = 2 and x >0.1; a similar failure to equili-
brate occurred for the 4{fcc}-type starts with R, =2 and
x =0.25 and 0.75. In other cases, an equilibrium was
reached after (1-3)X10° configurations. Table III lists
the excess internal energy u5M, together with the
deviationAu ?XIM from the LM values, defined in Eq. (9),
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where we have used

10. 84

u9CP(I')=—0.895929T + 1.5+ =

5
352.8 + 1.74X10

+ r? r

(21)

as the excess internal energy [7] for the OCP solids. It is
remarkable that the values of AuB™ for the BIM solids
are directly proportional to TI';, in contrast to the
behavior of the BIM fluids, where AuB™ T, The
reason for this is that the Madelung energy, which is pro-
portional to T, is the principal term in u2™ for the
solids. We note in passing that no substantial difference
in AuB™ could be seen between random bec and random
fcc starts at R, =3 and x =0.01.

Table III compares the quantities AuP™ with the
Madelung energies for the corresponding R,, x, and
types of start. To evaluate AEE™, we have used Eq. (20)
for the cases with x =0.05078, 0.16016, 0.61035, and
0.770 51; for other cases, the values in Table II have been
adopted. We find that the results for Au5™ at finite tem-
peratures are all reproduced with good accuracy by the
Madelung energies:

AEBIM
BIM M 22
Au g Nk, T (22)
As far as random solids are concerned, the possible errors
in AuB™ calculated from Egs. (20) and (22) are +0.02 at
most.
Since AEE™ /(NkpT) is proportional to I';, the excess

free energy for a BIM solid is thus

TABLE III. MC results for the normalized excess internal energy u 2™ for various BIM solids. The
quantity AuB™ is the deviation from the OCP LM value defined by Egs. (9) and (21), to be compared

with the corresponding Madelung energy AES™. See text for the explanation of “Type of start.”
R, x r, Type of start uM AuBM AEBM /(NkyT)

f;— 0.05078 180.0 random bcc —164.675+0.003 0.031 0.040
% 0.05078 360.0 random bcc —330.99410.003 0.081 0.080
% 0.160 16 191.469 random bcc —186.768+0.003 0.093 0.105
f;— 0.160 16 382.979 random bcc —375.213+0.003 0.186 0.210
% 0.5 163.636 random bcc —189.949+0.005 0.167 0.178
% 0.5 200.0 random bcc —232.542+0.004 0.199 0.218
i;— 0.5 200.0 CsCl —232.765+0.003 —0.024 —0.012
% 0.5 360.0 random bcc —419.839+0.004 0.381 0.392
% 0.61035 163.636 random bcc —199.920+0.004 0.156 0.179
i;— 0.77051 200.0 random bcc —262.4141+0.004 0.159 0.170
% 0.25 200.0 4{fcc} —237.268+0.003 0.503 0.484
~§- 0.5 200.0 CsCl —297.9911+0.004 —0.050 —0.038
% 0.75 200.0 4{fcc} —357.259+0.004 0.853 0.852
2 0.5 200.0 CsCl —372.5534+0.004 —0.072 —0.048
3 0.01074 250.0 random bcc —234.75+0.02 0.28 0.28
3 0.01042 250.0 random fcc —234.35+0.01 0.29

3 0.5 200.0 CsCl —646.8931+0.004 0.235 0.268
4 0.5 200.0 CsCl —989.841+0.004 1.246 1.356
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AEPM

Ni, T (23)

arEM =
We here propose that the total Helmholtz free energy of
the BIM solid is given by

AEA’}IM B ASBIM
NkyT Nkg ’

AfPM= (24)

where the entropy of mixing ASB™ is calculated by

counting the number of different configurations; that is,

ASBIM 0 for crystalline solids

"Nk | —Afia(Rz,x) for random solids. 25)

We remark that the R, dependence of ASB™ for random
solids is one of the essential elements of an ionic mixture;
it is responsible for the distortion or destruction of the
lattice order in a random solid, as depicted in Fig. 4.

From the free energies thus calculated for the three
different types of solids used in our MC simulations, we
can now determine the equilibrated structures for the
BIM solids. As noted above, we find that, in the ground
state, BIM’s form CsCl-type crystals for R, <2.3 and
mixtures of pure crystals of each species for 2.3 <R, <5.
At finite temperatures, however, the entropy-of-mixing
term becomes substantial and the equilibrium structure
may change. Comparison of the values of AfB™ for the
random and CsCl-type solids at x =0.5 shows that the
random solid has the lower free energy for I'; smaller
than 600 (Ry=1%), 210 (Rz=3), 150 (R,=2), 140
(Rz=3), and 2000 (R, =4). These I'; values are in fact
much larger than those at solidification, as estimated
from T g=(1—x)T;+xT,=(1—x +xR5*)~180. In
the construction of phase diagrams in Sec. II C, we thus
use the formulas for random solids in Eq. (25) to calculate
the free energies for BIM solids.

C. Phase diagrams

We first calculate phase diagrams for the BIM’s under
the condition of rigid uniform background charges, using
the Helmholtz free energies for both fluid and solid
phases obtained in Sec. II B. For application to the inte-
riors of WD’s, we then extend the calculations to con-
struct phase diagrams at constant pressure, including the
compressibility of the relativistically degenerate elec-
trons.

Phase diagrams for BIM’s are determined by compar-
ing the Helmholtz free energies

FBIM=(1—x)fOCP(D )+ xfOCP(T,)+ A fBIM 26)
for the fluids and the random solids. Here we use
FOCP(T)=—0.898 004T" +3.871 441 %25
—0.882812r %%
+2.13903InI"—3.242 22 (27)
as the free energy for the OCP fluid [6], and

FOCP(F)=—0.895929T +2 InT"— 1.885 506 — L2:5%

_176.4  5.980x10*
r? r

, (28)

for the OCP solid [7]. In cases where it is necessary to
extrapolate Eq. (28) to values of I' = 100, we set the last
three terms, representing the anharmonicity in the
thermal motions of particles, to the values at =100, in
order to preserve the requirement that fO¢F
(solid) > £ °P(fluid) for I" < 100.

Examples of the phase diagrams thus constructed are
shown in Figs. 5(a)-5(d) for BIM’s with R;=4%, 3, 3, and
B, respectively; the quantity T, is the freezing tempera-
ture given by Eq. (1) for an OCP of “1” particles. By
specific calculations, we find that demixing into two
different fluid phases does not occur at any temperature
for R; =4.5, as we show explicitly at the end of this sub-
section. The R, dependence of the phase diagrams can be
summarized as follows: For BIM’s with R, 5 1.4, the di-
agrams are of the azeotropic type, and no chemical sepa-
ration occurs at solidification except for x <0.01. Phase
diagrams for R, =1.5 have composite structures, con-
taining features of both the azeotropic and the eutectic
diagrams: for x >0.4, a “2”-rich solid with x =0.8-0.9
is produced at solidification, while a mixed solid emerges
from the fluid for x <0.4. For R; R 1.6, the phase dia-
grams are of the eutectic type, and nearly pure solids of
species “1”” and “2” form at solidification.

Chemical separation takes place upon solidification
when AfBM=AfBIM_ ASBIM /(Nk;)> 0 holds for all x
in the solid phase, a condition that is actually satisfied
when R, % 1.6. The sharp decrease in the freezing tem-
perature when x <<1 in the azeotropic phase diagrams
[cf. Fig. 5(a)] is a consequence of the finding that
AfB™M <0 when x << 1 in the BIM fluids [cf. Eq. (16)].

Ichimaru, Iyetomi, and Ogata [10] originally predicted
an azeotropic phase diagram for a BIM with R; =%. For
the fluid phase, they set Af ?XIM =0, based on MC simula-
tions performed at x =0.4-0.5 and on integral-equation
results, and they evaluated AfP™ variationally for the
solid by a density-functional method. The azeotropic dia-
gram in Ref. 10 results from the lower value of A f 5™ for
the solid compared to that of the fluid [22,34]. In the
present work, we have improved the free-energy formula
for BIM fluids by performing accurate MC simulations
for various R, and x and by exploiting a sum rule for the
excess free energy. For the solid phase, we have also im-
proved the free-energy formula by analyses of the
Madelung energies and of the internal energies at finite
temperatures, as computed from the MC simulations.

It has been pointed out [35] that the oscillatory
behavior of the normalized radial distribution function
for strongly coupled OCP’s resembles that for the hard-
sphere (HS) system, even though the interaction range for
a HS system is limited to lie within the HS diameter,
while it is infinite for the OCP. For that reason, it is in-
teresting to compare the present phase diagrams for
BIM’s with those for HS mixtures. Barrat, Baus, and
Hansen [36] evaluated the free energy for HS mixtures
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FIG. 5. Phase diagrams for BIM’s with constant, uniform
background-charge density: Rz = (a) %, (b) 2, (c) 3, and (d) 3.
The scaling parameter T, is the freezing temperature for a 1-
OCP.

with diameter ratios a both for the fluid and the solid
phases using a density-functional method, and they con-
structed the corresponding phase diagrams. The dia-
grams they obtained for the HS mixtures have a spindle-
type structure for a=1-1.06, an azeotropic structure for
a=1.06-1.09, and a eutectic structure for a>1.09. In
addition, they found nearly complete immiscibility for
a>1.18. According to the ion-sphere model for a BIM,
the charge ratio R, may be tentatively interpreted as
a=R}*. The characteristic charge ratio, R;=1.5, at
which the BIM phase diagrams change from azeotropic
to eutectic, would thus correspond to a=1.513=1.14.
Despite the differences between the HS and BIM interac-
tion potentials, we thus find a reasonable correspondence
between the phase diagrams of the two types of systems.

In actual applications to real, physical cases, including
the interiors of WD’s, phase diagrams constructed at
constant pressures are more useful than those obtained by
assuming the background charge distribution to be uni-
form. Such phase diagrams are based on the Gibbs free
energies, rather than the Helmholtz free energies of the
fluid and solid phases. For the mass densities ps=10"%[p
(g/cm®)]~107'-10%, and temperatures T¢=10"°[T
(K)]~1-10% found in WD’s, the electrons can be treated
as being in the ground state, since the ratio of the thermal
energy to the electron Fermi energy,

=1.688X 107 *T4[V 1+21.94(pg/u, )**—1]71,
€F

(29)

is quite small. Here we measure the number density of
electrons by the ratio [1]

3 1/3 1 p —173
ro= —=2.991x107% | = , (30)
47Tne ap He
where ap=#"/me’ is the Bohr radius, and

pe=3,x;A;/3;x;Z; is the mean molecular weight per
electron. The Coulomb coupling parameters in Eq. (2)
can be usefully rewritten in the form

Z5/3 1/3

i

Ps

I, =105.5
e

(31)

6

The dominant contribution to the pressure in a WD
comes from the relativistically degenerate electrons.
Therefore, we treat the partial pressures coming from the
ions as perturbations in comparison with the electron
pressure. The Helmholtz free energy is

F=F,+F, , (32)
where F| is the kinetic energy of the electrons,
Fy(V)=Er,), (33)

and the quantity F, is the exchange energy [37,38] for the
electrons plus the free energy for the ions:

F,(V,T)=EXr,)+Fr,T) . (34)

Up to the second order in F, the Gibbs free energy at a



48 EQUATIONS OF STATE AND PHASE DIAGRAMS FOR DENSE . . . 1353

pressure P and temperature T is given by

G(P,T)=Fy(Vy)+PVy+F (V)

1 [aF, 1P [a%F, 7! as)
2 | dV, av}
Here the volume V) is determined by the condition
_ oF, 36
- v |v=v,’ (36
which can be conveniently written in the form
- 23 -2 5 | 202
P=1.801X10 dyncm ™2 |[yV'1+y T—l
+In [y +V1+y? (37

Here we define y =0.01400/(r)y , where (r;)y is the
value of the parameter 7, [cf. Eq. (30)] when V =V,

We may examine the validity of the present perturba-
tion treatment by calculating the variation of the volume,
8V =V —V,, asa function of x; that is,

SV _ 1 9F, azFo o
avi

Setting Z, =6, for instance, we find |8V /V,| £0.05 for
all x with (r;), =0.02 and Rz =4.5. We thus regard Eq.

(35) as having sufficient accuracy to permit the deter-
mination of the phase diagrams in WD interiors.

Before considering the phase diagrams based on Eq.
(35), we explore the possibility of phase separation [9]
into two fluids having different compositions, x. In Fig.

(38)

0
O ]

TN
O.4x0.6 08 1.0

2.0
0 o2

FIG. 6. Demixing curves for C-O, C-Ne, and C-Fe BIM
fluids at P =10*2 dyncm 2.

6, the conditions for such a demixing are shown for dense
C-O (Rz=%), C-Ne (Rz=3), and C-Fe (Rz=2%) fluids
at P=102 dyncm™ 2, corresponding to (7, )V0
=0.02145. We find that the critical temperature T, for
demixing increases with R,, concurrent with a decrease
in the critical concentration x.. Specifically, we find
(T./(10° K),x,)=(0.027,0.38) for the C-O fluid,
(0.11,0.31) for C-Ne, and (3.5,0.082) for C-Fe. Since the
values of T, for the C-O and C-Ne fluids are far below
the freezing temperature, TS =1.7X10° K for a pure
carbon OCP, solidification takes place prior to demixing
for those fluids. For C-Fe fluids, however, T, is compara-
ble to T,f , leaving open for the moment the possibility
that demixing may occur prior to solidification of this
fluid. We will return to this issue below.

We now resume our discussion of the phase diagrams
for fluid-solid mixtures at constant pressure. Figures
7(a)-7(e) show the phase diagrams for dense O-Ne
(Rz=2),C-O(Rz;=4%),0-Mg (Rz;=3), C-Ne (R;=3),
and C-Fe (R;=1) matter at P =10 dyncm % The
compressibility of the electrons changes the diagrams
only slightly for R, 5 3; e.g., the eutectic concentration
and temperature decrease only by 8% and 5%, respec-
tively, for C—Ne matter in Fig. 7(c). For C-Fe matter,
however, the eutectic concentration changes rather
significantly from x =0.04 to x =0.004, as shown in Fig.
7(e). The fluid demixing curve for C-Fe matter, deter-
mined above, is superimposed in Fig. 7(e), where it is
shown as a dotted curve. Thus we can finally resolve the
question of whether or not demixing occurs prior to
solidification: we find that demixing actually does not
take place, even for a large-R, BIM such as C-Fe.

III. DENSE TERNARY-IONIC MIXTURES

In Sec. II, we presented phase diagrams for various
BIM'’s and predicted chemical separation for BIM’s with
R, X 1.6. However, the dense matter in a WD some-
times must be represented more accurately, e.g., by a
TIM rather than by a BIM. The chemical separation of
such a mixture can significantly extend the final stages of
stellar evolution. In many WD’s, the matter in the interi-
or may be well approximated [3,13,14] as a '2C-1°0-?2Ne
TIM, with xy, =0.01-0.02. Specifically in relation to the
problems of the WD cooling rate and of presupernova
evolution, we are interested in the radial distribution of
Ne, as remarked in Sec. I. According to the BIM analy-
ses described above, chemical separation takes place in
C-Ne BIM’s (R, =1.67) at solidification, but not in O-
Ne BIM’s (R;=1.25). Thus it is important to investi-
gate how the neon ‘“‘contaminant” affects a mixture that
is predominantly carbon and oxygen.

A similar problem arises with respect to magnesium in
an '0-’Ne-**Mg TIM, as traces X, ~0.05 of Mg have
been predicted [4] as an important minor constituent of
O-Ne-Mg WD’s. Because the value of R;=1.5 for O-
Mg corresponds to the critical value for chemical separa-
tion, inclusion of Ne in an O-Mg BIM may reduce the
“effective charge ratio” and thereby hinder possible
chemical separation of the mixture. In this section,
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temperature for an i-OCP. The dotted curve in panel (e) represents the fluid demixing curve from the bottom panel of Fig. 6.

through numerical analyses of the internal energies and
free energies, we demonstrate how solidification may ac-
tually proceed in such astrophysically important TIM’s.

A. Equations of state

We have calculated the excess internal energies u /M
for TIM fluids by the MC simulation method using
N =1200 particles for (Z,Z,,Z,)=(1,2,3), (1,2,4), and
(1,3,5) for several combinations of x; and I';. In each

run, we have generated 8 X 10° configurations at equilibri-

um. Table IV lists the computed values for the deviation
of uI™ from the LM values,

TIM —,, TIM _ OCP
Auex Uex X Uex (rl)

—x,u 9P () —x3ud°P(Ty) . (39)
For the solid phase, we have calculated the Madelung en-
ergy Ef™ in configurations of random-bcc-type at
(Z,,Z,,Z5)=(1,2,4), with N =432 particles, and the en-
ergy is obtained as an average over ten different starts.

TABLE IV. MC results for the normalized excess internal energy u ™ and the deviation AuI™

from the OCP LM value for various TIM fluids. The quantity Au r

(41), as described in text.

model 18 the value obtained from Eq.

Z, Z, Zs X1 X2 X3 r, uiM AulM Au ot
1 3 5 1 1 1 10 —63.59140.002 0.014 0.015
1 2 4 0.5 0.5 0 20 —35.863+0.001 0.007 0.005
1 2 4 0495 0495 001 20 —37.289+0.001 0.004 0.004
1 2 4 0.6 0.2 0.2 20 —56.645+0.002 0.007 0.007
1 2 4 0.2 0.6 0.2 20 —72.004+0.002 0.009 0.004
1 2 4 1 1 1 20 —83.3024:0.002 0.005 0.006
1 2 4 0.2 0.2 0.6 20 —121.258+0.002 —0.001 0.005
1 2 3 L 1 1 30 —91.357+0.002 0.001 0.004




Table V lists the deviations of E ™ from the LM values,

AEA’I,;IM E;‘I}M
N(Z,eP/a, N(Ze)/a,

+0.895929(x, +x,R33 +x3R3) .
(40)

Owing to the very large degree of freedom in different
possible parametric combinations for the TIM’s, it is par-
ticularly desirable to obtain an accurate mixing formula
for TIM energies using OCP and/or BIM values. Here
we adopt the following formula for the mixtures with
Z,>Z,>Z,, bilinear in x;, as an approximation relevant
for the excess free energies:

A TIM(RZZI,RZ31,x1,x2,x3,I‘1)
X2 X3
=x1%,Af 1, x,+x, +xx3Af 13 x,+x,
X3
tx,x3Af 53 x-_——2+x3 ) 41)
where the quantities Af;; are defined by
Af,j(x)——~ Afo™M(Rz i»x,T;) . (42)

Note that Eq. (41) reduces to the BIM formulas in Eqgs.
(13) or (23) when x, =0, and that it recovers those BIM
formulas in the limit Z,=Z, or Z,=Z, if we ignore re-
sidual x dependence in Af;;(x), as expected. In Table IV
and V, the excess internal energies calculated from Eq.
(41) as AuT™ =1 ,(3/3T)Af ™M for the fluid phase and
as AEEO%C]/[N(ZIe)Z/al]~[ 3/0T )AfIM ], for the
solid are listed for comparison with the MC results. We
find that Eq. (41) can reproduce the MC energies for both
the fluid and solid phases with discrepancies less than or
comparable to the standard deviations of the MC values.

|

TIM -
R 2
o Af e (Rzm )x3 0 03

— 2fOCP fOCP

_llm— fTIM(Rzyzl,z;xl_
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To examine the accuracy of Eq. (41) for the fluids at
I', =1, we have solved the corresponding HNC equations
and have compared the resultant HNC excess free ener-
gies AfTM. with Eq. (41). For TIM fluids with

(Z,,Z,,Z,)=(1,2,4), we find (AffNc,AfIM)
=(0.028,0.027) at (x,x,,x3)=(1,1,1) and T|=1;
(0.037,0.035) at (i,1,1) and 2; (0.022,0.023) at

(0.9,0.05,0.05) and 2; (0.007,0.006) at (0.05,0.9,0.05) and 2;
and (0.010,0.008) at (0.05,0.05,0.9) and 2. We thus con-
clude that Eq. (41) maintains its accuracy even at a I';
value as low as unity.

We are primarily interested in determining the free en-
ergy when x; <<1 for both the fluid and solid phases, as
this is the parameter range needed for application to C-
O-Ne and O-Ne-Mg TIM’s in WD interiors. Comparing
the internal energies at (x,x,,x3)=(0.5,0.5,0) and at
(x4,%5,Xx3)=(0.495,0.495,0.01) in Tables IV and V, we
find that inclusion of the minority ‘3 particles acts to
decrease the value of Aul™ for the fluid and to increase
AEI™ for the solid; that is,

N 43)
ax:;

Z 0 for the solid .

[<o for the fluid
X

Analogous features have been found for the BIM equa-
tions of state, as discussed in Sec. II.

The inequality (43) for the fluid cases can be confirmed
independently using a sum-rule argument connecting the
BIM screening potentials H,;;(0) and the derivatives of
AfTIM_in exact analogy with the sum-rule argument for
BIM ﬁuids given in Sec. IIA. As in the case of the OCP
screening potentials, the quantities H;;(0) correspond to
the difference between the excess free energies before and
after a nuclear reaction in a BIM. Corresponding to the
three possible combinations in the reactions, i.e.,
(i,j)=(1,1), (1,2), and (2,2), we have the sum rules [cf.
Eq. (17)]

(1+x,)e,x, +x,¢,6;T)
H;(0)
D HALEM(RZ 1%, T ) — k“T > (44a)
b

TABLE V. The deviation of the normalized Madelung energy AEJ™ for various TIM random
solids. The quantity AE ™™, is the value obtained from Eq. (41), as described in text.

AE™ AETM,
z, Z, Z, X1 X3 X3 2 2
N(Ze) /a, N(Ze)*/a,

1 2 4 0.5 0.5 0 0.0050=£0.000 1 0.0052

1 2 4 0.4954 0.4954 0.0093 0.0051+0.0002 0.0060

1 2 4 0.6019 0.1991 0.1991 0.0039+0.0003 0.0048

1 2 4 0.1991 0.6019 0.1991 0.0079+0.0004 0.0064

1 2 4 % 3 % 0.0074+0.0005 0.0078

1 2 4 0.1991 0.1991 0.6019 0.0141+0.0001 0.0146
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= hm

fTIM(RZ’31=1+RZ,21) x3—0 ¢,00¢

—_ OCP rl +fOCP(F2

AfTIM(RZ,31=2Rz,21)

=lim——
x3—> £e—0 00t

_2fOCP

Numerical values calculated from Egs. (44) using Egs. (6),
(13), and (18) are listed in Table VI for various TIM’s; for
reference, values of (3/0x;)f ™M x,—0 calculated from

Eq. (41) are given in parentheses. For all cases listed in
Table VI, the sum-rule values of (3/3x;)f M 2,0 take

on negative values, in agreement with the inequality (43)
for the fluid phase.

B. Chemical separation at solidification

Inequality (43) leads us to an interesting scenario for
the solidification of a TIM fluid with a small molar frac-
tion of “3.” (We recall that x;=0.01-0.05 in some of
the WD interiors; thus, cases with x; <<1 are the astro-
physically interesting ones.) For those TIM’s, it is
reasonable to regard the energy associated with “3” par-
ticles as a small perturbation to the total free energy. As
the temperature decreases, the TIM thus first produces a
solid following the phase diagram for the 1-2 BIM. No
“3” particles are to be found in the resulting solid because
an addition of “3” would act to increase Af ¢, TIM in the
solid over that in the fluid, as the inequalities (43) imply.
The subsequent evolution of the solidification depends on
the details of the 1-2 phase diagrams.

For TIM’s with R;,;51.4, including C-O-Ne
(Rz,;=1.33) and O-Ne-Mg (R ,;=1.25) mixtures, the
phase diagrams for 1-2 are of the azeotropic type, and the
molar fraction of ‘“2” at the azeotrope, x,~0.01, is
smaller than the x;=0.01-0.05 assumed for the WD’s.
Since the inequality x,(solid) > x,(fluid) holds in the BIM
azeotropic diagrams, the fraction of “2” in the fluid de-

fTIM(RZ,21,1+RZ’21;x1 _xZE,XZ‘_XIS,E;FI)
H,,(0)
o (D) +AfaGM(Rz51,%5,T)— kI;T ’
(44b)
TIM . — .
Af (RZ’21,2RZ’21,x1+x18,x2 (1+x1)8,€,r1)
H,,(0)
)= O (L) +Af M (R p1,30, )= — 2 (440)
B

creases as solidification proceeds, until the fluid becomes
effectively a 1-3 mixture with a small fraction of 2”
(x,~0.01). Finally, if R 3,2 1.6, the 1-3 mixture forms
a (nearly) pure solid of ““3,” as the BIM phase diagrams
imply. We thus conclude that chemical separation of the
“3” species occurs at solidification for TIM’s with
Rz, S1.4and R;;; R 1.6 when x3 << 1.

For 2C-190-22Ne TIM’s in WD’s, the charge ratios are
Rz, =1.33 and Rz;,=1.67 and the molar fraction of
“3” is x3=0.01-0.02. Therefore, following the argu-
ment given in the preceding paragraph, chemical separa-
tion of neon is predicted at solidification. The radial dis-
tribution of neon in a WD is in fact determined through
comparison of the mass densities of the C-O-Ne fluid and
the coexisting C-O solid at phase separation.
Solidification in a WD is expected to start from the
center, where the mass density and hence the freezing
temperature are highest. If the C-O solid produced at
the center is lighter than the C-O-Ne fluid, the solid floats
up and remelts, thereby reducing the oxygen fraction at
the center. In this case, a nearly pure neon core finally
forms. If the solid is heavier than the fluid, on the other
hand, the same argument leads us to expect a neon-rich
layer to be formed gradually in the outer layers of the
star.

To determine which of these scenarios one obtains, we
compare the mass densities of the C-O solids and the C-
O-Ne fluids under WD conditions. The mass-density
difference between the two phases at constant pressure is

p(solid) —p(fluid) _ ".(solid) p,(solid)
p(fluid) n,(fluid) g, (fluid)

-1, (45)

TABLE VI. Numerical values of (3/3x;)Af ™M x, -0 for various TIM fluids derived from the sum
rules given in Egs. (44). The numbers in parentheses represent the values calculated from Eq. (41).

Rz X3 r Rz3=2 Rz31=1+Rz, Rz31=2Rz,
1.2 0.1 30 —0.67 (—2.20) —0.79 (—2.39) —0.92 (—2.57)
1.2 0.5 30 —0.64 (—2.53) —0.75 (—2.50) —0.88 (—2.45)
1.2 0.9 30 —0.66 (—2.55) —0.78 (—2.45) —0.91 (—2.24)
1.2 0.1 50 —1.14 (—2.23) —1.34 (—2.43) —1.56 (—2.61)
1.2 0.5 50 —1.11 (—2.56) —1.31 (—2.53) —1.52 (—2.48)
1.2 0.9 50 —1.14 (—2.57) —1.33 (—2.43) —1.55 (—2.26)
1.5 0.1 50 —1.14 (—2.19) —1.64 (—2.45) —2.25 (—2.63)
1.5 0.5 50 —1.09 (—2.53) —1.59 (—2.53) —2.20 (—2.41)
1.5 0.9 50 —1.15 (—2.60) —1.63 (—2.51) —2.24 (—2.23)
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where n, is the electron number density for each phase
and p,=3,;x;4;/3,;x;Z;. At constant n,, the addition
of 2Ne to a 12C-1°0 fluid increases its mass density, since
the ratio A/Z =2.2 for neon is larger than the ratio
A/Z =2 that holds for both carbon and oxygen. We
evaluate Eq. (45) by treating the partial pressures due to

g(solid)—p(ﬂuid)N.ue(SOlid)_l_ 8V (solid) _ 8V (fluid) |H.(solid)

the ions as perturbations to the pressure of the relativisti-
cally degenerate electrons, in the same way as we did in
the construction of the phase diagrams in Sec. IIC. To
lowest order in the quantity 8V /V,, of Eq. (38), we then
find that Eq. (45) can be approximated as

p(fluid) "~ (fluid) v,

Figure 8 exhibits the boundaries arising from the con-
dition p(solid) <p(fluid) for '2C-'0O solids and '?C-'°O-
22Ne fluids with x, =0 (dotted lines), 0.01 (dashed lines),
and 0.02 (solid lines), at the freezing temperature of car-
bon. In the top panel, the pressure is P=4.79X 10?!
dyn cm 2, while for the bottom panel it is P =35.38 X 103
dyncm ™2 In WD interiors, we may assume [2] P > 10
dyncm™? and xy,=0.01-0.02. Thus we find that '2C-
160 solids are lighter than '2C-10-22Ne fluids for any mo-
lar fraction of oxygen in the fluid and solid phases as-
sumed for WD’s.

To conclude, we predict the formation of a nearly pure
neon core upon solidification of a C-O-Ne WD for any
C:O ratio. For O-Ne-Mg WD’s, the same arguments
demonstrate the possibility of chemical separation and
formation of a nearly pure magnesium core. Significantly
increased accuracy in the calculations would be required
for a precise determination of the critical value of R, at
which chemical separation takes place in BIM’s.

IV. CONCLUDING REMARKS

In this paper, we have calculated the free energies for
BIM fluids with R; <5 [Eq. (16)] using MC results for
the internal energies and the sum rule [Eq. (17)] for the
OCEP screening potential. For BIM solids with R, <4.5,
we have also evaluated free energies for three types of
BIM solid structures [Egs. (24) and (25)] through a com-
bination of Madelung-energy calculations with internal
energies calculated from MC simulations. We find that
random solids have the lowest free energy mnear
solidification. From the BIM phase diagrams shown in
Figs. 7, constructed with the compressibility of the rela-
tivisitically degenerate electrons included, we find that
the form of the phase diagram changes as a function of
R, from an azeotropic type when R; S 1.5 to a eutectic
type at R 1.5. In addition, through a comparison of
the MC results for the internal energies and the BIM
screening potentials at zero separation via the sum rules
in Egs. (44), we have found an accurate free-energy for-
mula [Eq. (41)] for TIM fluids and solids. We have ap-
plied these results for TIM’s, specifically using the in-
equality (43) for the free energy, to C-O-Ne WD’s. We
predict chemical separation of neon at solidification, and
the consequent formation of a nearly pure neon core in
such WD’s.

One of the most critical problems that remains to be
investigated is an examination of the accuracy of Eq. (25)

Vo i, (fluid) -~

(46)

f

for the entropy of mixing, especially for the random
solids. For BIM solids near the solidification tempera-
tures, the magnitude of AS®™ /(Nky) is comparable to
that of Af3™. While AfB™ has been determined with
good accuracy by the MC simulation method, the value
of ASB™ for random solids given in Eq. (25) remains an
assumption. Yet another problem to be investigated is
the effect of screening by the relativistically degenerate
electrons on the free energies of the ions, an effect
neglected in the present study. It has been pointed out
[39] that the screening length of the electrons, in units of

10 1 | BT T B I/. ‘. i

08—- / ..' [
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T 0.6 J/ -

S ] . [
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FIG. 8. Comparison of the relative mass densities of >C-'°0
solids and !2C-'0-*2Ne fluids with xy. =0 (dotted curves), 0.01
(dashed curves), and 0.02 (solid curves) at the freezing tempera-
ture for carbon. The pressure is P =4.79X 10?! dyncm™? for
the top panel and P =5.38X 10?2 dyncm™? for the bottom
panel. The mass density of the C-O solid is less than that of the
C-O-Ne fluid in the region below each of the curves, as indicated
by the arrow.
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the ion-sphere radius, remains finite even in the limit of
high densities. Because the permissible errors of the ex-
cess free energies must be <0.1% in order to be useful
for calculations of phase diagrams, it is possible that such
electron-screening effects may have non-negligible conse-
quences for the free energies and phase diagrams.
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